

SPRING GROVE AREA SCHOOL DISTRICT

PLANNED COURSE OVERVIEW

Classification: Elective	Total Instructional Time: 64.5 nours
Classification. Election	Total Instance Times (4.5 hours
Units of Credit: .5	Length of Period: 43 minutes
Grade Level(s): 9	Periods Per Cycle: 6
Course Title: Launching Into Aviation	Length of Course: 15 cycles

The ninth-grade course will provide the foundation for advanced exploration in the areas of flying, aerospace engineering, and unmanned aircraft systems. Students will learn about engineering practices, problem solving, and the innovations and technological developments that have made today's aviation and aerospace industries possible. Students will also learn about the wide variety of exciting and rewarding careers available to them. The ninth-grade course will inspire students to consider aviation and aerospace careers while laying the foundation for continued study in grades 10 through 12 and beyond.

HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. **HS-ETS1-2** Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

HS-ETS1-4 Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

HS-ESS3-2 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

Instructional Strategies, Learning Practices, Activities, and Experiences			
Hands-on Activities Lesson Objectives Digital Content (Videos, Slide Shows)	Formative Assessments Labs Group Projects	Online Resources Summative Assessments Engineering Projects	
Assessments			
Observation Discussions	Quizzes Exams	Unit Exams Projects	
Materials/Resources			
All materials and resources are provided digitally via the AOPA curriculum including lesson plans, activities, projects, assessments.	Various craft supplies and tools to complete hands-on activities.		

Г

CONTENT/KEY CONCEPTS	OBJECTIVES/STANDARDS
Science and Engineering Practices Asking Questions and Defining Problems Constructing Explanations and Designing Solutions	HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
Disciplinary Core Ideas	ETS1.A Defining and Delimiting Engineering Problems
Crosscutting Concepts Systems and System Models Influence of Science, Engineering, and Technology on Society and the Natural World	
Science and Engineering Practices Constructing Explanations and Designing Solutions	HS-ETS1-2 Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
Disciplinary Core Ideas	ETS1.C Optimizing the Design Solution
Science and Engineering Practices Constructing Explanations and Designing Solutions	HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade- offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
Disciplinary Core Ideas	ETS1.B Developing Possible Solutions
Crosscutting Concepts Influence of Science, Engineering, and Technology on Society and the Natural World	

CONTENT/KEY CONCEPTS	OBJECTIVES/STANDARDS
Science and Engineering Practices Using Mathematics and Computational Thinking	HS-ETS1-4 Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
Crosscutting Concepts Systems and System Models	
Science and Engineering Practices Developing and Using Models Disciplinary Core Ideas	HS-LS 1-2 Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.
Crosscutting Concepts Systems and System Models	LS1.A Structure and Function
Science and Engineering Practices Using Mathematics and Computational Thinking	HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. (NOTE: This standard is not explicitly used as math is not required to complete the exercise).
Disciplinary Core Ideas	PS2.A Forces and Motion PS2.B Types of Interactions
Crosscutting Concepts Systems and System Models	
Common Core State Standards Mathematics	HSG.MG.A.1 Use geometric shapes, their measures and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
	HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.
	HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

CONTENT/KEY CONCEPTS	OBJECTIVES/STANDARDS
Science and Engineering Practices Asking Questions and Defining Problems Constructing Explanations and Designing Solutions	HS-ESS3-2 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
Crosscutting Concepts Systems and System Models Influence of Science, Engineering, and Technology on Society and the Natural World	
Common Core State Standards Mathematics	HSA-REI.B.3 Solve equations and inequalities in one variable.
	HSG.MG.A.1 Use geometric shapes, their measures and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
	HSN-Q.A.1 Reason quantitatively and use units to solve problems.
	HSN.Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.
Standards for Mathematical Practice	CCSS.MATH.CONTENT.HSN.Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas.
	CCSS.MATH.CONTENT.HSN.Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
	CCSS.MATH.PRACTICE.MP4 Model with mathematics.